Bounded-degree factors of lacunary multivariate polynomials

نویسنده

  • Bruno Grenet
چکیده

In this paper, we present a new method for computing boundeddegree factors of lacunary multivariate polynomials. In particular for polynomials over number fields, we give a new algorithm that takes as input a multivariate polynomial f in lacunary representation and a degree bound d and computes the irreducible factors of degree at most d of f in time polynomial in the lacunary size of f and in d. Our algorithm, which is valid for any field of zero characteristic, is based on a new gap theorem that enables reducing the problem to several instances of (a) the univariate case and (b) low-degree multivariate factorization. The reduction algorithms we propose are elementary in that they only manipulate the exponent vectors of the input polynomial. The proof of correctness and the complexity bounds rely on the Newton polytope of the polynomial, where the underlying valued field consists of Puiseux series in a single variable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing the multilinear factors of lacunary polynomials without heights

We present a deterministic polynomial-time algorithm which computes the multilinear factors of multivariate lacunary polynomials over number fields. It is based on a new Gap theorem which allows to test whether P(X) = ∑j=1 ajX j(vX+ t) j(uX+ w)j is identically zero in polynomial time. Previous algorithms for this task were based on Gap Theorems expressed in terms of the height of the coefficien...

متن کامل

Irreducibility testing of lacunary 0, 1-polynomials

A reciprocal polynomial g(x) ∈ Z[x] is such that g(0) 6= 0 and if g(α) = 0 then g(1/α) = 0. The non-reciprocal part of a monic polynomial f(x) ∈ Z[x] is f(x) divided by the product of its irreducible monic reciprocal factors (to their multiplicity). This paper presents an algorithm for testing the irreducibility of the nonreciprocal part of a 0, 1-polynomial (a polynomial having each coefficien...

متن کامل

Simple Learning Algorithms for Decision Trees and Multivariate Polynomials

In this paper we develop a new approach for learning decision trees and multivariate polynomials via interpolation of multivariate polynomials. This new approach yields simple learning algorithms for multivariate polynomials and decision trees over nite elds under any constant bounded product distribution. The output hypothesis is a (single) multivariate polynomial that is an-approximation of t...

متن کامل

Some Closure Results for Polynomial Factorization and Applications

In a sequence of fundamental results in the 80’s, Kaltofen [Kal85, Kal86, Kal87, Kal89] showed that factors of multivariate polynomials with small arithmetic circuits have small arithmetic circuits. In other words, the complexity class VP is closed under taking factors. A natural question in this context is to understand if other natural classes of multivariate polynomials, for instance, arithm...

متن کامل

Computing the torsion points of a variety defined by lacunary polynomials

We present an algorithm for computing the set of torsion points satisfying a given system of multivariate polynomial equations. Its complexity is quasilinear in the logarithm of the degree and in the height of the input equations but exponential in their number of variables and nonzero terms.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 75  شماره 

صفحات  -

تاریخ انتشار 2016